bokomslag Error Estimates for Well-Balanced Schemes on Simple Balance Laws
Vetenskap & teknik

Error Estimates for Well-Balanced Schemes on Simple Balance Laws

Debora Amadori Laurent Gosse

Pocket

769:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 110 sidor
  • 2015
This monograph presents, in an attractive and self-contained form, techniques based on the L1 stability theory derived at the end of the 1990s by A. Bressan, T.-P. Liu and T. Yang that yield original error estimates for so-called well-balanced numerical schemes solving 1D hyperbolic systems of balance laws. Rigorous error estimates are presented for both scalar balance laws and a position-dependent relaxation system, in inertial approximation. Such estimates shed light on why those algorithms based on source terms handled like "local scatterers" can outperform other, more standard, numerical schemes. Two-dimensional Riemann problems for the linear wave equation are also solved, with discussion of the issues raised relating to the treatment of 2D balance laws. All of the material provided in this book is highly relevant for the understanding of well-balanced schemes and will contribute to future improvements.
  • Författare: Debora Amadori, Laurent Gosse
  • Illustratör: Bibliographie
  • Format: Pocket/Paperback
  • ISBN: 9783319247847
  • Språk: Engelska
  • Antal sidor: 110
  • Utgivningsdatum: 2015-11-23
  • Förlag: Springer International Publishing AG