bokomslag Evolutionary Data Clustering: Algorithms and Applications
Data & IT

Evolutionary Data Clustering: Algorithms and Applications

Ibrahim Aljarah Hossam Faris Seyedali Mirjalili

Pocket

2669:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 248 sidor
  • 2022
This book provides an in-depth analysis of the current evolutionary clustering techniques. It discusses the most highly regarded methods for data clustering. The book provides literature reviews about single objective and multi-objective evolutionary clustering algorithms. In addition, the book provides a comprehensive review of the fitness functions and evaluation measures that are used in most of evolutionary clustering algorithms. Furthermore, it provides a conceptual analysis including definition, validation and quality measures, applications, and implementations for data clustering using classical and modern nature-inspired techniques. It features a range of proven and recent nature-inspired algorithms used to data clustering, including particle swarm optimization, ant colony optimization, grey wolf optimizer, salp swarm algorithm, multi-verse optimizer, Harris hawks optimization, beta-hill climbing optimization. The book also covers applications of evolutionary data clustering indiverse fields such as image segmentation, medical applications, and pavement infrastructure asset management.
  • Författare: Ibrahim Aljarah, Hossam Faris, Seyedali Mirjalili
  • Format: Pocket/Paperback
  • ISBN: 9789813341937
  • Språk: Engelska
  • Antal sidor: 248
  • Utgivningsdatum: 2022-02-22
  • Förlag: Springer Verlag, Singapore