bokomslag Federated Learning Systems
Data & IT

Federated Learning Systems

Muhammad Habib Ur Rehman Mohamed Medhat Gaber

Pocket

2739:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 196 sidor
  • 2022
This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors control of their critical data.
  • Författare: Muhammad Habib Ur Rehman, Mohamed Medhat Gaber
  • Format: Pocket/Paperback
  • ISBN: 9783030706067
  • Språk: Engelska
  • Antal sidor: 196
  • Utgivningsdatum: 2022-06-12
  • Förlag: Springer Nature Switzerland AG