bokomslag Finite von Neumann Algebras and Masas
Vetenskap & teknik

Finite von Neumann Algebras and Masas

Allan Sinclair

Pocket

1999:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 5-10 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 410 sidor
  • 2008
A thorough account of the methods that underlie the theory of subalgebras of finite von Neumann algebras, this book contains a substantial amount of current research material and is ideal for those studying operator algebras. The conditional expectation, basic construction and perturbations within a finite von Neumann algebra with a fixed faithful normal trace are discussed in detail. The general theory of maximal abelian self-adjoint subalgebras (masas) of separable II1 factors is presented with illustrative examples derived from group von Neumann algebras. The theory of singular masas and Sorin Popa's methods of constructing singular and semi-regular masas in general separable II1 factor are explored. Appendices cover the ultrapower of a II1 factor and the properties of unbounded operators required for perturbation results. Proofs are given in considerable detail and standard basic examples are provided, making the book understandable to postgraduates with basic knowledge of von Neumann algebra theory.
  • Författare: Allan Sinclair
  • Format: Pocket/Paperback
  • ISBN: 9780521719193
  • Språk: Engelska
  • Antal sidor: 410
  • Utgivningsdatum: 2008-06-01
  • Förlag: Cambridge University Press