bokomslag Fractional Dynamics on Networks and Lattices
2659:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 5-10 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 336 sidor
  • 2019
This book analyzes stochastic processes on networks and regular structures such as lattices by employing the Markovian random walk approach. Part 1 is devoted to the study of local and non-local random walks. It shows how non-local random walk strategies can be defined by functions of the Laplacian matrix that maintain the stochasticity of the transition probabilities. A major result is that only two types of functions are admissible: type (i) functions generate asymptotically local walks with the emergence of Brownian motion, whereas type (ii) functions generate asymptotically scale-free non-local fractional walks with the emergence of Lvy flights. In Part 2, fractional dynamics and Lvy flight behavior are analyzed thoroughly, and a generalization of Plya's classical recurrence theorem is developed for fractional walks. The authors analyze primary fractional walk characteristics such as the mean occupation time, the mean first passage time, the fractal scaling of the set of distinct nodes visited, etc. The results show the improved search capacities of fractional dynamics on networks.
  • Författare: Thomas Michelitsch, Alejandro Perez Riascos, Bernard Collet, Andrzej Nowakowski, Franck Nicolleau
  • Format: Inbunden
  • ISBN: 9781786301581
  • Språk: Engelska
  • Antal sidor: 336
  • Utgivningsdatum: 2019-04-12
  • Förlag: ISTE Ltd and John Wiley & Sons Inc