bokomslag Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems
Data & IT

Game-Theoretic Learning and Distributed Optimization in Memoryless Multi-Agent Systems

Tatiana Tatarenko

Inbunden

759:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 171 sidor
  • 2017
This book presents new efficient methods for optimization in realistic large-scale, multi-agent systems. These methods do not require the agents to have the full information about the system, but instead allow them to make their local decisions based only on the local information, possibly obtained during communication with their local neighbors. The book, primarily aimed at researchers in optimization and control, considers three different information settings in multi-agent systems: oracle-based, communication-based, and payoff-based. For each of these information types, an efficient optimization algorithm is developed, which leads the system to an optimal state. The optimization problems are set without such restrictive assumptions as convexity of the objective functions, complicated communication topologies, closed-form expressions for costs and utilities, and finiteness of the systems state space.
  • Författare: Tatiana Tatarenko
  • Illustratör: Bibliographie 38 farbige Abbildungen
  • Format: Inbunden
  • ISBN: 9783319654782
  • Språk: Engelska
  • Antal sidor: 171
  • Utgivningsdatum: 2017-09-28
  • Förlag: Springer International Publishing AG