bokomslag Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups
Vetenskap & teknik

Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups

Drew Armstrong

Pocket

1489:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 159 sidor
  • 2009
This memoir is a refinement of the author's PhD thesis - written at Cornell University (2006). It is primarily a description of new research but also includes a substantial amount of background material. At the heart of the memoir the author introduces and studies a poset $NC^{(k)}(W)$ for each finite Coxeter group $W$ and each positive integer $k$. When $k=1$, his definition coincides with the generalized noncrossing partitions introduced by Brady and Watt in $K(\pi, 1)$'s for Artin groups of finite type and Bessis in The dual braid monoid. When $W$ is the symmetric group, the author obtains the poset of classical $k$-divisible noncrossing partitions, first studied by Edelman in Chain enumeration and non-crossing partitions.
  • Författare: Drew Armstrong
  • Format: Pocket/Paperback
  • ISBN: 9780821844908
  • Språk: Engelska
  • Antal sidor: 159
  • Utgivningsdatum: 2009-11-30
  • Förlag: American Mathematical Society