Vetenskap & teknik
Pocket
Generalized Noncrossing Partitions and Combinatorics of Coxeter Groups
Drew Armstrong
1379:-
Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.
This memoir is a refinement of the author's PhD thesis - written at Cornell University (2006). It is primarily a description of new research but also includes a substantial amount of background material. At the heart of the memoir the author introduces and studies a poset $NC^{(k)}(W)$ for each finite Coxeter group $W$ and each positive integer $k$. When $k=1$, his definition coincides with the generalized noncrossing partitions introduced by Brady and Watt in $K(\pi, 1)$'s for Artin groups of finite type and Bessis in The dual braid monoid. When $W$ is the symmetric group, the author obtains the poset of classical $k$-divisible noncrossing partitions, first studied by Edelman in Chain enumeration and non-crossing partitions.
- Format: Pocket/Paperback
- ISBN: 9780821844908
- Språk: Engelska
- Antal sidor: 159
- Utgivningsdatum: 2009-11-30
- Förlag: American Mathematical Society