bokomslag Global Well-Posedness of High Dimensional Maxwell-Dirac for Small Critical Data
Vetenskap & teknik

Global Well-Posedness of High Dimensional Maxwell-Dirac for Small Critical Data

Cristian Gavrus Sung-Jin Oh

Pocket

1429:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 5-10 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 94 sidor
  • 2020
In this paper, the authors prove global well-posedness of the massless Maxwell-Dirac equation in the Coulomb gauge on $\mathbb{R}^{1+d} (d\geq 4)$ for data with small scale-critical Sobolev norm, as well as modified scattering of the solutions. Main components of the authors' proof are A) uncovering null structure of Maxwell-Dirac in the Coulomb gauge, and B) proving solvability of the underlying covariant Dirac equation. A key step for achieving both is to exploit (and justify) a deep analogy between Maxwell-Dirac and Maxwell-Klein-Gordon (for which an analogous result was proved earlier by Krieger-Sterbenz-Tataru, which says that the most difficult part of Maxwell-Dirac takes essentially the same form as Maxwell-Klein-Gordon.
  • Författare: Cristian Gavrus, Sung-Jin Oh
  • Format: Pocket/Paperback
  • ISBN: 9781470441111
  • Språk: Engelska
  • Antal sidor: 94
  • Utgivningsdatum: 2020-07-30
  • Förlag: American Mathematical Society