Vetenskap & teknik
Pocket
Global Well-Posedness of High Dimensional Maxwell-Dirac for Small Critical Data
Cristian Gavrus • Sung-Jin Oh
1429:-
Uppskattad leveranstid 5-10 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
In this paper, the authors prove global well-posedness of the massless Maxwell-Dirac equation in the Coulomb gauge on $\mathbb{R}^{1+d} (d\geq 4)$ for data with small scale-critical Sobolev norm, as well as modified scattering of the solutions. Main components of the authors' proof are A) uncovering null structure of Maxwell-Dirac in the Coulomb gauge, and B) proving solvability of the underlying covariant Dirac equation. A key step for achieving both is to exploit (and justify) a deep analogy between Maxwell-Dirac and Maxwell-Klein-Gordon (for which an analogous result was proved earlier by Krieger-Sterbenz-Tataru, which says that the most difficult part of Maxwell-Dirac takes essentially the same form as Maxwell-Klein-Gordon.
- Format: Pocket/Paperback
- ISBN: 9781470441111
- Språk: Engelska
- Antal sidor: 94
- Utgivningsdatum: 2020-07-30
- Förlag: American Mathematical Society