bokomslag Graph-Based Clustering and Data Visualization Algorithms
Data & IT

Graph-Based Clustering and Data Visualization Algorithms

Gnes Vathy-Fogarassy Jnos Abonyi

Pocket

919:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 110 sidor
  • 2013
This work presents a data visualization technique that combines graph-based topology representation and dimensionality reduction methods to visualize the intrinsic data structure in a low-dimensional vector space. The application of graphs in clustering and visualization has several advantages. A graph of important edges (where edges characterize relations and weights represent similarities or distances) provides a compact representation of the entire complex data set. This text describes clustering and visualization methods that are able to utilize information hidden in these graphs, based on the synergistic combination of clustering, graph-theory, neural networks, data visualization, dimensionality reduction, fuzzy methods, and topology learning. The work contains numerous examples to aid in the understanding and implementation of the proposed algorithms, supported by a MATLAB toolbox available at an associated website.
  • Författare: Gnes Vathy-Fogarassy, Jnos Abonyi
  • Format: Pocket/Paperback
  • ISBN: 9781447151579
  • Språk: Engelska
  • Antal sidor: 110
  • Utgivningsdatum: 2013-06-05
  • Förlag: Springer London Ltd