bokomslag Graph Embedding for Pattern Analysis
Data & IT

Graph Embedding for Pattern Analysis

Yun Fu Yunqian Ma

Pocket

1499:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 260 sidor
  • 2014
Graph Embedding for Pattern Recognition covers theory methods, computation, and applications widely used in statistics, machine learning, image processing, and computer vision. This book presents the latest advances in graph embedding theories, such as nonlinear manifold graph, linearization method, graph based subspace analysis, L1 graph, hypergraph, undirected graph, and graph in vector spaces. Real-world applications of these theories are spanned broadly in dimensionality reduction, subspace learning, manifold learning, clustering, classification, and feature selection. A selective group of experts contribute to different chapters of this book which provides a comprehensive perspective of this field.
  • Författare: Yun Fu, Yunqian Ma
  • Format: Pocket/Paperback
  • ISBN: 9781489990624
  • Språk: Engelska
  • Antal sidor: 260
  • Utgivningsdatum: 2014-12-13
  • Förlag: Springer-Verlag New York Inc.