bokomslag Hierarchical Neural Network Structures for Phoneme Recognition
Data & IT

Hierarchical Neural Network Structures for Phoneme Recognition

Daniel Vasquez Rainer Gruhn Wolfgang Minker

Pocket

1519:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 134 sidor
  • 2014
In this book, hierarchical structures based on neural networks are investigated for automatic speech recognition. These structures are mainly evaluated within the phoneme recognition task under the Hybrid Hidden Markov Model/Artificial Neural Network (HMM/ANN) paradigm. The baseline hierarchical scheme consists of two levels each which is based on a Multilayered Perceptron (MLP). Additionally, the output of the first level is used as an input for the second level. This system can be substantially speeded up by removing the redundant information contained at the output of the first level.
  • Författare: Daniel Vasquez, Rainer Gruhn, Wolfgang Minker
  • Format: Pocket/Paperback
  • ISBN: 9783642432101
  • Språk: Engelska
  • Antal sidor: 134
  • Utgivningsdatum: 2014-11-09
  • Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K