bokomslag Homological Mirror Symmetry and Tropical Geometry
Vetenskap & teknik

Homological Mirror Symmetry and Tropical Geometry

Ricardo Castano-Bernard Fabrizio Catanese Maxim Kontsevich Tony Pantev Yan Soibelman

Pocket

1649:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 436 sidor
  • 2014
The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the tropical approach to Gromov-Witten theory and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Geometry studies piecewise-linear objects which appear as degenerations of the corresponding algebro-geometric objects.
  • Författare: Ricardo Castano-Bernard, Fabrizio Catanese, Maxim Kontsevich, Tony Pantev, Yan Soibelman
  • Illustratör: Bibliographie 25 schwarz-weiße und 18 farbige Abbildungen
  • Format: Pocket/Paperback
  • ISBN: 9783319065137
  • Språk: Engelska
  • Antal sidor: 436
  • Utgivningsdatum: 2014-10-16
  • Förlag: Springer International Publishing AG