Vetenskap & teknik
Pocket
Hyperbolic Actions and 2nd Bounded Cohomology of Subgroups of $\textrm {Out}(F_n)$
Michael Handel • Lee Mosher
1429:-
Uppskattad leveranstid 5-10 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
In this two part work we prove that for every finitely generated subgroup ? < Out(Fn), either ? is virtually abelian or H2 b (?; R) contains a vector space embedding of 1. The method uses actions on hyperbolic spaces. In Part I we focus on the case of infinite lamination subgroups ?those for which the set of all attracting laminations of all elements of ? is an infinite setusing actions on free splitting complexes of free groups. In Part II we focus on finite lamination subgroups ? and on the construction of useful new hyperbolic actions of those subgroups.
- Format: Pocket/Paperback
- ISBN: 9781470466985
- Språk: Engelska
- Antal sidor: 170
- Utgivningsdatum: 2024-02-29
- Förlag: American Mathematical Society