bokomslag Hypergeometrie et Fonction Zeta de Riemann
Vetenskap & teknik

Hypergeometrie et Fonction Zeta de Riemann

Krattenthaler

Pocket

1189:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 87 sidor
  • 2007
The authors prove Rivoal's "denominator conjecture" concerning the common denominators of coefficients of certain linear forms in zeta values. These forms were recently constructed to obtain lower bounds for the dimension of the vector space over $\mathbb Q$ spanned by $1,\zeta(m),\zeta(m+2),\dots,\zeta(m+2h)$, where $m$ and $h$ are integers such that $m\ge2$ and $h\ge0$. In particular, the authors immediately get the following results as corollaries: at least one of the eight numbers $\zeta(5),\zeta(7),\dots,\zeta(19)$ is irrational, and there exists an odd integer $j$ between $5$ and $165$ such that $1$, $\zeta(3)$ and $\zeta(j)$ are linearly independent over $\mathbb{Q $. This strengthens some recent results. The authors also prove a related conjecture, due to Vasilyev, and as well a conjecture, due to Zudilin, on certain rational approximations of $\zeta(4)$. The proofs are based on a hypergeometric identity between a single sum and a multiple sum due to Andrews. The authors hope that it will
  • Författare: Krattenthaler
  • Format: Pocket/Paperback
  • ISBN: 9780821839614
  • Språk: Engelska
  • Antal sidor: 87
  • Utgivningsdatum: 2007-03-01
  • Förlag: American Mathematical Society