bokomslag Igusa's $p$-Adic Local Zeta Function and the Monodromy Conjecture for Non-Degenerate Surface Singularities
Vetenskap & teknik

Igusa's $p$-Adic Local Zeta Function and the Monodromy Conjecture for Non-Degenerate Surface Singularities

Bart Bories Willem Veys

Pocket

1439:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 131 sidor
  • 2016
In 2011 Lemahieu and Van Proeyen proved the Monodromy Conjecture for the local topological zeta function of a non-degenerate surface singularity. The authors start from their work and obtain the same result for Igusa's $p$-adic and the motivic zeta function. In the $p$-adic case, this is, for a polynomial $f\in\mathbf{Z}[x,y,z]$ satisfying $f(0,0,0)=0$ and non-degenerate with respect to its Newton polyhedron, we show that every pole of the local $p$-adic zeta function of $f$ induces an eigenvalue of the local monodromy of $f$ at some point of $f^{-1}(0)\subset\mathbf{C}^3$ close to the origin. Essentially the entire paper is dedicated to proving that, for $f$ as above, certain candidate poles of Igusa's $p$-adic zeta function of $f$, arising from so-called $B_1$-facets of the Newton polyhedron of $f$, are actually not poles. This turns out to be much harder than in the topological setting. The combinatorial proof is preceded by a study of the integral points in three-dimensional fundamental parallelepipeds. Together with the work of Lemahieu and Van Proeyen, this main result leads to the Monodromy Conjecture for the $p$-adic and motivic zeta function of a non-degenerate surface singularity.
  • Författare: Bart Bories, Willem Veys
  • Format: Pocket/Paperback
  • ISBN: 9781470418410
  • Språk: Engelska
  • Antal sidor: 131
  • Utgivningsdatum: 2016-06-30
  • Förlag: American Mathematical Society