bokomslag Information-Theoretic Methods in Data Science
Data & IT

Information-Theoretic Methods in Data Science

Miguel R D Rodrigues

Inbunden

1529:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 560 sidor
  • 2021
Learn about the state-of-the-art at the interface between information theory and data science with this first unified treatment of the subject. Written by leading experts in a clear, tutorial style, and using consistent notation and definitions throughout, it shows how information-theoretic methods are being used in data acquisition, data representation, data analysis, and statistics and machine learning. Coverage is broad, with chapters on signal acquisition, data compression, compressive sensing, data communication, representation learning, emerging topics in statistics, and much more. Each chapter includes a topic overview, definition of the key problems, emerging and open problems, and an extensive reference list, allowing readers to develop in-depth knowledge and understanding. Providing a thorough survey of the current research area and cutting-edge trends, this is essential reading for graduate students and researchers working in information theory, signal processing, machine learning, and statistics.
  • Författare: Miguel R D Rodrigues
  • Illustratör: black and white 73 Line drawings Worked examples or Exercises 1 Halftones black and white
  • Format: Inbunden
  • ISBN: 9781108427135
  • Språk: Engelska
  • Antal sidor: 560
  • Utgivningsdatum: 2021-04-08
  • Förlag: Cambridge University Press