bokomslag Intelligent Fault Diagnosis and Health Assessment for Complex Electro-Mechanical Systems
Data & IT

Intelligent Fault Diagnosis and Health Assessment for Complex Electro-Mechanical Systems

Weihua Li Xiaoli Zhang Ruqiang Yan

Pocket

2739:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 467 sidor
  • 2024
Based on AI and machine learning, this book systematically presents the theories and methods for complex electro-mechanical system fault prognosis, intelligent diagnosis, and health state assessment in modern industry. The book emphasizes feature extraction, incipient fault prediction, fault classification, and degradation assessment, which are based on supervised-, semi-supervised-, manifold-, and deep learning; machinery degradation state tracking and prognosis by phase space reconstruction; and complex electro-mechanical system reliability assessment and health maintenance based on running state info. These theories and methods are integrated with practical industrial applications, which can help the readers get into the field more smoothly and provide an important reference for their study, research, and engineering practice.
  • Författare: Weihua Li, Xiaoli Zhang, Ruqiang Yan
  • Format: Pocket/Paperback
  • ISBN: 9789819935390
  • Språk: Engelska
  • Antal sidor: 467
  • Utgivningsdatum: 2024-09-13
  • Förlag: Springer Verlag, Singapore