bokomslag Intersection Local Times, Loop Soups and Permanental Wick Powers
Vetenskap & teknik

Intersection Local Times, Loop Soups and Permanental Wick Powers

Yves Le Jan Michael B Marcus Jay Rosen

Pocket

1379:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 78 sidor
  • 2017
Several stochastic processes related to transient Levy processes with potential densities $u(x,y)=u(y-x)$, that need not be symmetric nor bounded on the diagonal, are defined and studied. They are real valued processes on a space of measures $\mathcal{V}$ endowed with a metric $d$. Sufficient conditions are obtained for the continuity of these processes on $(\mathcal{V},d)$. The processes include $n$-fold self-intersection local times of transient Levy processes and permanental chaoses, which are `loop soup $n$-fold self-intersection local times' constructed from the loop soup of the Levy process. Loop soups are also used to define permanental Wick powers, which generalizes standard Wick powers, a class of $n$-th order Gaussian chaoses. Dynkin type isomorphism theorems are obtained that relate the various processes. Poisson chaos processes are defined and permanental Wick powers are shown to have a Poisson chaos decomposition. Additional properties of Poisson chaos processes are studied and a martingale extension is obtained for many of the processes described above.
  • Författare: Yves Le Jan, Michael B Marcus, Jay Rosen
  • Format: Pocket/Paperback
  • ISBN: 9781470436957
  • Språk: Engelska
  • Antal sidor: 78
  • Utgivningsdatum: 2017-05-30
  • Förlag: American Mathematical Society