bokomslag Intersection Spaces, Spatial Homology Truncation, and String Theory
Vetenskap & teknik

Intersection Spaces, Spatial Homology Truncation, and String Theory

Markus Banagl

Pocket

679:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 224 sidor
  • 2010
Intersection cohomology assigns groups which satisfy a generalized form of Poincar duality over the rationals to a stratified singular space. This monograph introduces a method that assigns to certain classes of stratified spaces cell complexes, called intersection spaces, whose ordinary rational homology satisfies generalized Poincar duality. The cornerstone of the method is a process of spatial homology truncation, whose functoriality properties are analyzed in detail. The material on truncation is autonomous and may be of independent interest tohomotopy theorists. The cohomology of intersection spaces is not isomorphic to intersection cohomology and possesses algebraic features such as perversity-internal cup-products and cohomology operations that are not generally available for intersection cohomology. A mirror-symmetric interpretation, as well as applications to string theory concerning massless D-branes arising in type IIB theory during a Calabi-Yau conifold transition, are discussed.
  • Författare: Markus Banagl
  • Illustratör: Bibliographie
  • Format: Pocket/Paperback
  • ISBN: 9783642125881
  • Språk: Engelska
  • Antal sidor: 224
  • Utgivningsdatum: 2010-07-10
  • Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K