bokomslag Invariant Potential Theory in the Unit Ball of Cn
Vetenskap & teknik

Invariant Potential Theory in the Unit Ball of Cn

Manfred Stoll

Pocket

639:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 184 sidor
  • 1994
This monograph provides an introduction and a survey of recent results in potential theory with respect to the Laplace-Beltrami operator D in several complex variables, with special emphasis on the unit ball in Cn. Topics covered include Poisson-Szeg integrals on the ball, the Green's function for D and the Riesz decomposition theorem for invariant subharmonic functions. The extension to the ball of the classical Fatou theorem on non-tangible limits of Poisson integrals, and Littlewood's theorem on the existence of radial limits of subharmonic functions are covered in detail. The monograph also contains recent results on admissible and tangential boundary limits of Green potentials, and Lp inequalities for the invariant gradient of Green potentials. Applications of some of the results to Hp spaces, and weighted Bergman and Dirichlet spaces of invariant harmonic functions are included. The notes are self-contained, and should be accessible to anyone with some basic knowledge of several complex variables.
  • Författare: Manfred Stoll
  • Format: Pocket/Paperback
  • ISBN: 9780521468305
  • Språk: Engelska
  • Antal sidor: 184
  • Utgivningsdatum: 1994-05-01
  • Förlag: Cambridge University Press