bokomslag Inverse Linear Problems on Hilbert Space and their Krylov Solvability
Vetenskap & teknik

Inverse Linear Problems on Hilbert Space and their Krylov Solvability

No Angelo Caruso Alessandro Michelangeli

Pocket

969:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-11 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 140 sidor
  • 2023
This book presents a thorough discussion of the theory of abstract inverse linear problems on Hilbert space. Given an unknown vector f in a Hilbert space H, a linear operator A acting on H, and a vector g in H satisfying Af=g, one is interested in approximating f by finite linear combinations of g, Ag, A2g, A3g, The closed subspace generated by the latter vectors is called the Krylov subspace of H generated by g and A. The possibility of solving this inverse problem by means of projection methods on the Krylov subspace is the main focus of this text. After giving a broad introduction to the subject, examples and counterexamples of Krylov-solvable and non-solvable inverse problems are provided, together with results on uniqueness of solutions, classes of operators inducing Krylov-solvable inverse problems, and the behaviour of Krylov subspaces under small perturbations. An appendix collects material on weaker convergence phenomena in general projection methods. This subject of this book lies at the boundary of functional analysis/operator theory and numerical analysis/approximation theory and will be of interest to graduate students and researchers in any of these fields.
  • Författare: No Angelo Caruso, Alessandro Michelangeli
  • Format: Pocket/Paperback
  • ISBN: 9783030881610
  • Språk: Engelska
  • Antal sidor: 140
  • Utgivningsdatum: 2023-02-11
  • Förlag: Springer Nature Switzerland AG