bokomslag Isoperimetric Inequalities in Unbounded Convex Bodies
Vetenskap & teknik

Isoperimetric Inequalities in Unbounded Convex Bodies

Gian Paolo Leonardi Manuel Ritore Efstratios Vernadakis

Pocket

1429:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 5-10 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 86 sidor
  • 2022
We consider the problem of minimizing the relative perimeter under a volume constraint in an unbounded convex body C ? Rn, without assuming any further regularity on the boundary of C. Motivated by an example of an unbounded convex body with null isoperimetric profile, we introduce the concept of unbounded convex body with uniform geometry. We then provide a handy characterization of the uniform geometry property and, by exploiting the notion of asymptotic cylinder of C, we prove existence of isoperimetric regions in a generalized sense. By an approximation argument we show the strict concavity of the isoperimetric profile and, consequently, the connectedness of generalized isoperimetric regions. We also focus on the cases of small as well as of large volumes; in particular we show existence of isoperimetric regions with sufficiently large volumes, for special classes of unbounded convex bodies. We finally address some questions about isoperimetric rigidity and analyze the asymptotic behavior of the isoperimetric profile in connection with the notion of isoperimetric dimension.
  • Författare: Gian Paolo Leonardi, Manuel Ritore, Efstratios Vernadakis
  • Format: Pocket/Paperback
  • ISBN: 9781470451189
  • Språk: Engelska
  • Antal sidor: 86
  • Utgivningsdatum: 2022-06-30
  • Förlag: American Mathematical Society