bokomslag Joint Training for Neural Machine Translation
Data & IT

Joint Training for Neural Machine Translation

Yong Cheng

Inbunden

759:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 78 sidor
  • 2019
This book presents four approaches to jointly training bidirectional neural machine translation (NMT) models. First, in order to improve the accuracy of the attention mechanism, it proposes an agreement-based joint training approach to help the two complementary models agree on word alignment matrices for the same training data. Second, it presents a semi-supervised approach that uses an autoencoder to reconstruct monolingual corpora, so as to incorporate these corpora into neural machine translation. It then introduces a joint training algorithm for pivot-based neural machine translation, which can be used to mitigate the data scarcity problem. Lastly it describes an end-to-end bidirectional NMT model to connect the source-to-target and target-to-source translation models, allowing the interaction of parameters between these two directional models.
  • Författare: Yong Cheng
  • Format: Inbunden
  • ISBN: 9789813297470
  • Språk: Engelska
  • Antal sidor: 78
  • Utgivningsdatum: 2019-09-06
  • Förlag: Springer Verlag, Singapore