bokomslag Kernel Mode Decomposition and the Programming of Kernels
Vetenskap & teknik

Kernel Mode Decomposition and the Programming of Kernels

Houman Owhadi Clint Scovel Gene Ryan Yoo

Pocket

1139:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 118 sidor
  • 2021
This monograph demonstrates a new approach to the classical mode decomposition problem through nonlinear regression models, which achieve near-machine precision in the recovery of the modes. The presentation includes a review of generalized additive models, additive kernels/Gaussian processes, generalized Tikhonov regularization, empirical mode decomposition, and Synchrosqueezing, which are all related to and generalizable under the proposed framework. Although kernel methods have strong theoretical foundations, they require the prior selection of a good kernel. While the usual approach to this kernel selection problem is hyperparameter tuning, the objective of this monograph is to present an alternative (programming) approach to the kernel selection problem while using mode decomposition as a prototypical pattern recognition problem. In this approach, kernels are programmed for the task at hand through the programming of interpretable regression networks in the contextof additive Gaussian processes. It is suitable for engineers, computer scientists, mathematicians, and students in these fields working on kernel methods, pattern recognition, and mode decomposition problems.
  • Författare: Houman Owhadi, Clint Scovel, Gene Ryan Yoo
  • Format: Pocket/Paperback
  • ISBN: 9783030821708
  • Språk: Engelska
  • Antal sidor: 118
  • Utgivningsdatum: 2021-12-04
  • Förlag: Springer Nature Switzerland AG