bokomslag Latent Factor Analysis for High-dimensional and Sparse Matrices
Data & IT

Latent Factor Analysis for High-dimensional and Sparse Matrices

Ye Yuan Xin Luo

Pocket

689:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 92 sidor
  • 2022
Latent factor analysis models are an effective type of machine learning model for addressing high-dimensional and sparse matrices, which are encountered in many big-data-related industrial applications. The performance of a latent factor analysis model relies heavily on appropriate hyper-parameters. However, most hyper-parameters are data-dependent, and using grid-search to tune these hyper-parameters is truly laborious and expensive in computational terms. Hence, how to achieve efficient hyper-parameter adaptation for latent factor analysis models has become a significant question.This is the first book to focus on how particle swarm optimization can be incorporated into latent factor analysis for efficient hyper-parameter adaptation, an approach that offers high scalability in real-world industrial applications. The book will help students, researchers and engineers fully understand the basic methodologies of hyper-parameter adaptation via particle swarm optimization in latent factor analysis models. Further, it will enable them to conduct extensive research and experiments on the real-world applications of the content discussed.
  • Författare: Ye Yuan, Xin Luo
  • Format: Pocket/Paperback
  • ISBN: 9789811967023
  • Språk: Engelska
  • Antal sidor: 92
  • Utgivningsdatum: 2022-11-16
  • Förlag: Springer Verlag, Singapore