Vetenskap & teknik
Pocket
Layer Potentials and Boundary-Value Problems for Second Order Elliptic Operators with Data in Besov Spaces
Ariel Barton • Svitlana Mayboroda
1399:-
Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.
This monograph presents a comprehensive treatment of second order divergence form elliptic operators with bounded measurable $t$-independent coefficients in spaces of fractional smoothness, in Besov and weighted $L^p$ classes. The authors establish: (1) Mapping properties for the double and single layer potentials, as well as the Newton potential (2) Extrapolation-type solvability results: the fact that solvability of the Dirichlet or Neumann boundary value problem at any given $L^p$ space automatically assures their solvability in an extended range of Besov spaces (3) Well-posedness for the non-homogeneous boundary value problems. In particular, the authors prove well-posedness of the non-homogeneous Dirichlet problem with data in Besov spaces for operators with real, not necessarily symmetric, coefficients.
- Format: Pocket/Paperback
- ISBN: 9781470419899
- Språk: Engelska
- Antal sidor: 110
- Utgivningsdatum: 2016-09-30
- Förlag: American Mathematical Society