bokomslag Least Squares Support Vector Machines
Data & IT

Least Squares Support Vector Machines

Johan A K Suykens Tony Van Gestel Joseph De Brabanter Bart De Moor Joos P L Vandewalle

Inbunden

2229:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 308 sidor
  • 2002
This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors explain the natural links between LS-SVM classifiers and kernel Fisher discriminant analysis. Bayesian inference of LS-SVM models is discussed, together with methods for imposing sparseness and employing robust statistics.The framework is further extended towards unsupervised learning by considering PCA analysis and its kernel version as a one-class modelling problem. This leads to new primal-dual support vector machine formulations for kernel PCA and kernel CCA analysis. Furthermore, LS-SVM formulations are given for recurrent networks and control. In general, support vector machines may pose heavy computational challenges for large data sets. For this purpose, a method of fixed size LS-SVM is proposed where the estimation is done in the primal space in relation to a Nystrm sampling with active selection of support vectors. The methods are illustrated with several examples.
  • Författare: Johan A K Suykens, Tony Van Gestel, Joseph De Brabanter, Bart De Moor, Joos P L Vandewalle
  • Format: Inbunden
  • ISBN: 9789812381514
  • Språk: Engelska
  • Antal sidor: 308
  • Utgivningsdatum: 2002-11-01
  • Förlag: World Scientific Publishing Co Pte Ltd