Kommande
bokomslag Lectures On Deformation Quantization: From Moyal Product To Kontsevich's Formality Theorem
Vetenskap & teknik

Lectures On Deformation Quantization: From Moyal Product To Kontsevich's Formality Theorem

Georgy Igorevich Sharygin

Inbunden

2429:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

  • 400 sidor
  • 2025
Principles of classical Hamiltonian mechanics say that the evolution of a dynamical system is determined by the Poisson bracket of observable functions with the given Hamiltonian function of the system. In Quantum Mechanics, these principles are modified so that the algebra of observable functions should be replaced by a noncommutative algebra of operators and the Poisson bracket by their commutator so that the canonical commutation relations hold. Thus, working with quantum systems, we must determine the 'quantization' of our observables, i.e. to choose a noncommutative algebra whose elements would play the role of the observables. With some modifications, this question is the main content of the Deformation Quantization problem formulated in 1978 by Flato and others.This book is based on the course that the author taught in the Fall semester of 2019 at Peking University. The main purpose of that course and of this book is to acquaint the reader with the vast scope of ideas related to the Deformation Quantization of Poisson manifolds. The book begins with Quantum Mechanics and Moyal product formula and covers the three main constructions that solve the Deformation Quantization problem: Lecomte and de Wilde deformation of symplectic manifolds, Fedosov's quantization theory and Kontsevich's formality theorem. In the appendices, the Tamarkin's proof of formality theorem is outlined.The book is written in a reader-friendly manner and is as self-contained as possible. It includes several sets of problems and exercises that will help the reader to master the material.
  • Författare: Georgy Igorevich Sharygin
  • Format: Inbunden
  • ISBN: 9789811297809
  • Språk: Engelska
  • Antal sidor: 400
  • Utgivningsdatum: 2025-03-04
  • Förlag: World Scientific Publishing Co Pte Ltd