bokomslag Level One Algebraic Cusp Forms of Classical Groups of Small Rank
Vetenskap & teknik

Level One Algebraic Cusp Forms of Classical Groups of Small Rank

Gaetan Chenevier David A Renard

Pocket

1369:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 122 sidor
  • 2015
The authors determine the number of level $1$, polarized, algebraic regular, cuspidal automorphic representations of $\mathrm{GL}_n$ over $\mathbb Q$ of any given infinitesimal character, for essentially all $n \leq 8$. For this, they compute the dimensions of spaces of level $1$ automorphic forms for certain semisimple $\mathbb Z$-forms of the compact groups $\mathrm{SO}_7$, $\mathrm{SO}_8$, $\mathrm{SO}_9$ (and ${\mathrm G}_2$) and determine Arthur's endoscopic partition of these spaces in all cases. They also give applications to the $121$ even lattices of rank $25$ and determinant $2$ found by Borcherds, to level one self-dual automorphic representations of $\mathrm{GL}_n$ with trivial infinitesimal character, and to vector valued Siegel modular forms of genus $3$. A part of the authors' results are conditional to certain expected results in the theory of twisted endoscopy.
  • Författare: Gaetan Chenevier, David A Renard
  • Format: Pocket/Paperback
  • ISBN: 9781470410940
  • Språk: Engelska
  • Antal sidor: 122
  • Utgivningsdatum: 2015-09-30
  • Förlag: American Mathematical Society