bokomslag Link Prediction in Social Networks
Data & IT

Link Prediction in Social Networks

Srinivas Virinchi Pabitra Mitra

Pocket

759:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 67 sidor
  • 2016
This work presents link prediction similarity measures for social networks that exploit the degree distribution of the networks. In the context of link prediction in dense networks, the text proposes similarity measures based on Markov inequality degree thresholding (MIDTs), which only consider nodes whose degree is above a threshold for a possible link. Also presented are similarity measures based on cliques (CNC, AAC, RAC), which assign extra weight between nodes sharing a greater number of cliques. Additionally, a locally adaptive (LA) similarity measure is proposed that assigns different weights to common nodes based on the degree distribution of the local neighborhood and the degree distribution of the network. In the context of link prediction in dense networks, the text introduces a novel two-phase framework that adds edges to the sparse graph to forma boost graph.
  • Författare: Srinivas Virinchi, Pabitra Mitra
  • Illustratör: 11 schwarz-weiße Tabellen 5 schwarz-weiße Abbildungen Bibliographie
  • Format: Pocket/Paperback
  • ISBN: 9783319289212
  • Språk: Engelska
  • Antal sidor: 67
  • Utgivningsdatum: 2016-01-29
  • Förlag: Springer International Publishing AG