Locally AH-Algebras

Häftad, Engelska, 2015

Av Huaxin Lin

1 229 kr

Tillfälligt slut

A unital separable $C^\ast$-algebra, $A$ is said to be locally AH with no dimension growth if there is an integer $d>0$ satisfying the following: for any $\epsilon >0$ and any compact subset ${\mathcal F}\subset A,$ there is a unital $C^\ast$-subalgebra, $B$ of $A$ with the form $PC(X, M_n)P$, where $X$ is a compact metric space with covering dimension no more than $d$ and $P\in C(X, M_n)$ is a projection, such that $\mathrm{dist}(a, B)

Produktinformation

  • Utgivningsdatum2015-05-30
  • Mått178 x 254 x undefined mm
  • Vikt186 g
  • FormatHäftad
  • SpråkEngelska
  • SerieMemoirs of the American Mathematical Society
  • FörlagAmerican Mathematical Society
  • ISBN9781470414665