bokomslag Locally AH-Algebras
Vetenskap & teknik

Locally AH-Algebras

Huaxin Lin

Pocket

1349:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 108 sidor
  • 2015
A unital separable $C^\ast$-algebra, $A$ is said to be locally AH with no dimension growth if there is an integer $d>0$ satisfying the following: for any $\epsilon >0$ and any compact subset ${\mathcal F}\subset A,$ there is a unital $C^\ast$-subalgebra, $B$ of $A$ with the form $PC(X, M_n)P$, where $X$ is a compact metric space with covering dimension no more than $d$ and $P\in C(X, M_n)$ is a projection, such that $\mathrm{dist}(a, B)<\epsilon \text{ for all } a\in\mathcal {F}.$ The authors prove that the class of unital separable simple $C^\ast$-algebras which are locally AH with no dimension growth can be classified up to isomorphism by their Elliott invariant. As a consequence unital separable simple $C^\ast$-algebras which are locally AH with no dimension growth are isomorphic to a unital simple AH-algebra with no dimension growth.
  • Författare: Huaxin Lin
  • Format: Pocket/Paperback
  • ISBN: 9781470414665
  • Språk: Engelska
  • Antal sidor: 108
  • Utgivningsdatum: 2015-05-30
  • Förlag: American Mathematical Society