bokomslag Machine Learning and Data Mining in Aerospace Technology
Data & IT

Machine Learning and Data Mining in Aerospace Technology

Aboul Ella Hassanien Ashraf Darwish Hesham El-Askary

Pocket

2969:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 232 sidor
  • 2020
This book explores the main concepts, algorithms, and techniques of Machine Learning and data mining for aerospace technology. Satellites are the eagle eyes that allow us to view massive areas of the Earth simultaneously, and can gather more data, more quickly, than tools on the ground. Consequently, the development of intelligent health monitoring systems for artificial satellites which can determine satellites current status and predict their failure based on telemetry data is one of the most important current issues in aerospace engineering. This book is divided into three parts, the first of which discusses central problems in the health monitoring of artificial satellites, including tensor-based anomaly detection for satellite telemetry data and machine learning in satellite monitoring, as well as the design, implementation, and validation of satellite simulators. The second part addresses telemetry data analytics and mining problems, while the last part focuses on security issues in telemetry data.
  • Författare: Aboul Ella Hassanien, Ashraf Darwish, Hesham El-Askary
  • Format: Pocket/Paperback
  • ISBN: 9783030202149
  • Språk: Engelska
  • Antal sidor: 232
  • Utgivningsdatum: 2020-08-14
  • Förlag: Springer Nature Switzerland AG