bokomslag Machine Learning and Hybrid Modelling for Reaction Engineering
Data & IT

Machine Learning and Hybrid Modelling for Reaction Engineering

Dongda Zhang Ehecatl Antonio Del Ro Chanona

Inbunden

4279:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 3-8 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 440 sidor
  • 2023
Over the last decade, there has been a significant shift from traditional mechanistic and empirical modelling into statistical and data-driven modelling for applications in reaction engineering. In particular, the integration of machine learning and first-principle models has demonstrated significant potential and success in the discovery of (bio)chemical kinetics, prediction and optimisation of complex reactions, and scale-up of industrial reactors. Summarising the latest research and illustrating the current frontiers in applications of hybrid modelling for chemical and biochemical reaction engineering, Machine Learning and Hybrid Modelling for Reaction Engineering fills a gap in the methodology development of hybrid models. With a systematic explanation of the fundamental theory of hybrid model construction, time-varying parameter estimation, model structure identification and uncertainty analysis, this book is a great resource for both chemical engineers looking to use the latest computational techniques in their research and computational chemists interested in new applications for their work.
  • Författare: Dongda Zhang, Ehecatl Antonio Del Ro Chanona
  • Format: Inbunden
  • ISBN: 9781839165634
  • Språk: Engelska
  • Antal sidor: 440
  • Utgivningsdatum: 2023-12-20
  • Förlag: Royal Society of Chemistry