bokomslag Machine Learning for Asset Managers
Data & IT

Machine Learning for Asset Managers

Marcos M Lpez De Prado

Pocket

469:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 5-10 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 152 sidor
  • 2020
Successful investment strategies are specific implementations of general theories. An investment strategy that lacks a theoretical justification is likely to be false. Hence, an asset manager should concentrate her efforts on developing a theory rather than on backtesting potential trading rules. The purpose of this Element is to introduce machine learning (ML) tools that can help asset managers discover economic and financial theories. ML is not a black box, and it does not necessarily overfit. ML tools complement rather than replace the classical statistical methods. Some of ML's strengths include (1) a focus on out-of-sample predictability over variance adjudication; (2) the use of computational methods to avoid relying on (potentially unrealistic) assumptions; (3) the ability to "learn" complex specifications, including nonlinear, hierarchical, and noncontinuous interaction effects in a high-dimensional space; and (4) the ability to disentangle the variable search from the specification search, robust to multicollinearity and other substitution effects.
  • Författare: Marcos M Lpez De Prado
  • Illustratör: black and white 30 Line drawings Worked examples or Exercises 4 Tables black and white
  • Format: Pocket/Paperback
  • ISBN: 9781108792899
  • Språk: Engelska
  • Antal sidor: 152
  • Utgivningsdatum: 2020-04-30
  • Förlag: Cambridge University Press