bokomslag Machine Learning on Commodity Tiny Devices
Data & IT

Machine Learning on Commodity Tiny Devices

Song Guo Qihua Zhou

Inbunden

1389:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 250 sidor
  • 2022
This book aims at the tiny machine learning (TinyML) software and hardware synergy for edge intelligence applications. This book presents on-device learning techniques covering model-level neural network design, algorithm-level training optimization and hardware-level instruction acceleration. Analyzing the limitations of conventional in-cloud computing would reveal that on-device learning is a promising research direction to meet the requirements of edge intelligence applications. As to the cutting-edge research of TinyML, implementing a high-efficiency learning framework and enabling system-level acceleration is one of the most fundamental issues. This book presents a comprehensive discussion of the latest research progress and provides system-level insights on designing TinyML frameworks, including neural network design, training algorithm optimization and domain-specific hardware acceleration. It identifies the main challenges when deploying TinyML tasks in the real world and guides the researchers to deploy a reliable learning system. This book will be of interest to students and scholars in the field of edge intelligence, especially to those with sufficient professional Edge AI skills. It will also be an excellent guide for researchers to implement high-performance TinyML systems.
  • Författare: Song Guo, Qihua Zhou
  • Illustratör: black and white 20 Halftones 7 Tables, black and white 36 Line drawings black and white 56 Illu
  • Format: Inbunden
  • ISBN: 9781032374239
  • Språk: Engelska
  • Antal sidor: 250
  • Utgivningsdatum: 2022-12-13
  • Förlag: CRC Press