bokomslag Machine Learning Support for Fault Diagnosis of System-on-Chip
Data & IT

Machine Learning Support for Fault Diagnosis of System-on-Chip

Patrick Girard Shawn Blanton Li-C Wang

Pocket

1029:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 316 sidor
  • 2024
This book provides a state-of-the-art guide to Machine Learning (ML)-based techniques that have been shown to be highly efficient for diagnosis of failures in electronic circuits and systems. The methods discussed can be used for volume diagnosis after manufacturing or for diagnosis of customer returns. Readers will be enabled to deal with huge amount of insightful test data that cannot be exploited otherwise in an efficient, timely manner. After some background on fault diagnosis and machine learning, the authors explain and apply optimized techniques from the ML domain to solve the fault diagnosis problem in the realm of electronic system design and manufacturing. These techniques can be used for failure isolation in logic or analog circuits, board-level fault diagnosis, or even wafer-level failure cluster identification. Evaluation metrics as well as industrial case studies are used to emphasize the usefulness and benefits of using ML-based diagnosis techniques.
  • Författare: Patrick Girard, Shawn Blanton, Li-C Wang
  • Format: Pocket/Paperback
  • ISBN: 9783031196416
  • Språk: Engelska
  • Antal sidor: 316
  • Utgivningsdatum: 2024-03-14
  • Förlag: Springer International Publishing AG