bokomslag Machine Learning with Quantum Computers
Data & IT

Machine Learning with Quantum Computers

Maria Schuld Francesco Petruccione

Pocket

1959:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 312 sidor
  • 2022
This book offers an introduction into quantum machine learning research, covering approaches that range from "near-term" to fault-tolerant quantum machine learning algorithms, and from theoretical to practical techniques that help us understand how quantum computers can learn from data. Among the topics discussed are parameterized quantum circuits, hybrid optimization, data encoding, quantum feature maps and kernel methods, quantum learning theory, as well as quantum neural networks. The book aims at an audience of computer scientists and physicists at the graduate level onwards. The second edition extends the material beyond supervised learning and puts a special focus on the developments in near-term quantum machine learning seen over the past few years.
  • Författare: Maria Schuld, Francesco Petruccione
  • Format: Pocket/Paperback
  • ISBN: 9783030831004
  • Språk: Engelska
  • Antal sidor: 312
  • Utgivningsdatum: 2022-10-19
  • Förlag: Springer Nature Switzerland AG