bokomslag Manifolds with Cusps of Rank One
Data & IT

Manifolds with Cusps of Rank One

Werner Mller

Pocket

389:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 158 sidor
  • 1987
The manifolds investigated in this monograph are generalizations of (XX)-rank one locally symmetric spaces. In the first part of the book the author develops spectral theory for the differential Laplacian operator associated to the so-called generalized Dirac operators on manifolds with cusps of rank one. This includes the case of spinor Laplacians on (XX)-rank one locally symmetric spaces. The time-dependent approach to scattering theory is taken to derive the main results about the spectral resolution of these operators. The second part of the book deals with the derivation of an index formula for generalized Dirac operators on manifolds with cusps of rank one. This index formula is used to prove a conjecture of Hirzebruch concerning the relation of signature defects of cusps of Hilbert modular varieties and special values of L-series. This book is intended for readers working in the field of automorphic forms and analysis on non-compact Riemannian manifolds, and assumes a knowledge of PDE, scattering theory and harmonic analysis on semisimple Lie groups.
  • Författare: Werner Mller
  • Format: Pocket/Paperback
  • ISBN: 9783540176961
  • Språk: Engelska
  • Antal sidor: 158
  • Utgivningsdatum: 1987-03-01
  • Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K