bokomslag Marginal Space Learning for Medical Image Analysis
Data & IT

Marginal Space Learning for Medical Image Analysis

Yefeng Zheng Dorin Comaniciu

Pocket

789:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 10-16 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 268 sidor
  • 2016
Automatic detection and segmentation of anatomical structures in medical images are prerequisites to subsequent image measurements and disease quantification, and therefore have multiple clinical applications. This book presents an efficient object detection and segmentation framework, called Marginal Space Learning, which runs at a sub-second speed on a current desktop computer, faster than the state-of-the-art. Trained with a sufficient number of data sets, Marginal Space Learning is also robust under imaging artifacts, noise and anatomical variations. The book showcases 35 clinical applications of Marginal Space Learning and its extensions to detecting and segmenting various anatomical structures, such as the heart, liver, lymph nodes and prostate in major medical imaging modalities (CT, MRI, X-Ray and Ultrasound), demonstrating its efficiency and robustness.
  • Författare: Yefeng Zheng, Dorin Comaniciu
  • Format: Pocket/Paperback
  • ISBN: 9781493955756
  • Språk: Engelska
  • Antal sidor: 268
  • Utgivningsdatum: 2016-09-03
  • Förlag: Springer-Verlag New York Inc.