bokomslag Math for Deep Learning
Data & IT

Math for Deep Learning

Ron Kneusel

Pocket

769:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 5-10 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 344 sidor
  • 2021
With Math for Deep Learning, you'll learn the essential mathematics used by and as a background for deep learning. You'll work through Python examples to learn key deep learning related topics in probability, statistics, linear algebra, differential calculus, and matrix calculus as well as how to implement data flow in a neural network, backpropagation, and gradient descent. You'll also use Python to work through the mathematics that underlies those algorithms and even build a fully-functional neural network. In addition you'll find coverage of gradient descent including variations commonly used by the deep learning community: SGD, Adam, RMSprop, and Adagrad/Adadelta.
  • Författare: Ron Kneusel
  • Format: Pocket/Paperback
  • ISBN: 9781718501904
  • Språk: Engelska
  • Antal sidor: 344
  • Utgivningsdatum: 2021-12-07
  • Förlag: No Starch Press,US