bokomslag Mathematical Aspects of Deep Learning
Data & IT

Mathematical Aspects of Deep Learning

Philipp Grohs

Inbunden

1389:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 2-7 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 492 sidor
  • 2022
In recent years the development of new classification and regression algorithms based on deep learning has led to a revolution in the fields of artificial intelligence, machine learning, and data analysis. The development of a theoretical foundation to guarantee the success of these algorithms constitutes one of the most active and exciting research topics in applied mathematics. This book presents the current mathematical understanding of deep learning methods from the point of view of the leading experts in the field. It serves both as a starting point for researchers and graduate students in computer science, mathematics, and statistics trying to get into the field and as an invaluable reference for future research.
  • Författare: Philipp Grohs
  • Illustratör: Worked examples or Exercises
  • Format: Inbunden
  • ISBN: 9781316516782
  • Språk: Engelska
  • Antal sidor: 492
  • Utgivningsdatum: 2022-12-22
  • Förlag: Cambridge University Press