bokomslag Mathematical Foundations of Infinite-Dimensional Statistical Models
Samhälle & debatt

Mathematical Foundations of Infinite-Dimensional Statistical Models

Evarist Gin

Inbunden

2229:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 5-10 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 720 sidor
  • 2015
In nonparametric and high-dimensional statistical models, the classical Gauss-Fisher-Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, on approximation and wavelet theory, and on the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is then presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In the final chapter, the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions.
  • Författare: Evarist Gin
  • Format: Inbunden
  • ISBN: 9781107043169
  • Språk: Engelska
  • Antal sidor: 720
  • Utgivningsdatum: 2015-11-18
  • Förlag: Cambridge University Press