bokomslag Mathematical Study of Degenerate Boundary Layers
Vetenskap & teknik

Mathematical Study of Degenerate Boundary Layers

Anne-Laure Dalibard Laure Saint-Raymond

Pocket

1419:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 111 sidor
  • 2018
This paper is concerned with a complete asymptotic analysis as $E \to 0$ of the Munk equation $\partial _x\psi -E \Delta ^2 \psi = \tau $ in a domain $\Omega \subset \mathbf R^2$, supplemented with boundary conditions for $\psi $ and $\partial _n \psi $. This equation is a simple model for the circulation of currents in closed basins, the variables $x$ and $y$ being respectively the longitude and the latitude. A crude analysis shows that as $E \to 0$, the weak limit of $\psi $ satisfies the so-called Sverdrup transport equation inside the domain, namely $\partial _x \psi ^0=\tau $, while boundary layers appear in the vicinity of the boundary.
  • Författare: Anne-Laure Dalibard, Laure Saint-Raymond
  • Format: Pocket/Paperback
  • ISBN: 9781470428358
  • Språk: Engelska
  • Antal sidor: 111
  • Utgivningsdatum: 2018-06-30
  • Förlag: American Mathematical Society