bokomslag Mathematical Theories of Machine Learning - Theory and Applications
Data & IT

Mathematical Theories of Machine Learning - Theory and Applications

Bin Shi S S Iyengar

Pocket

1309:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

Andra format:

  • 133 sidor
  • 2020
This book studies mathematical theories of machine learning. The first part of the book explores the optimality and adaptivity of choosing step sizes of gradient descent for escaping strict saddle points in non-convex optimization problems. In the second part, the authors propose algorithms to find local minima in nonconvex optimization and to obtain global minima in some degree from the Newton Second Law without friction. In the third part, the authors study the problem of subspace clustering with noisy and missing data, which is a problem well-motivated by practical applications data subject to stochastic Gaussian noise and/or incomplete data with uniformly missing entries. In the last part, the authors introduce an novel VAR model with Elastic-Net regularization and its equivalent Bayesian model allowing for both a stable sparsity and a group selection.
  • Författare: Bin Shi, S S Iyengar
  • Format: Pocket/Paperback
  • ISBN: 9783030170783
  • Språk: Engelska
  • Antal sidor: 133
  • Utgivningsdatum: 2020-08-14
  • Förlag: Springer Nature Switzerland AG