bokomslag Matrix Functions of Bounded Type: An Interplay Between Function Theory and Operator Theory
Vetenskap & teknik

Matrix Functions of Bounded Type: An Interplay Between Function Theory and Operator Theory

Raul E Curto In Sung Hwang Woo Young Lee

Pocket

1369:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Tillfälligt slut online – klicka på "Bevaka" för att få ett mejl så fort varan går att köpa igen.

  • 100 sidor
  • 2019
In this paper, the authors study matrix functions of bounded type from the viewpoint of describing an interplay between function theory and operator theory. They first establish a criterion on the coprime-ness of two singular inner functions and obtain several properties of the Douglas-Shapiro-Shields factorizations of matrix functions of bounded type. They propose a new notion of tensored-scalar singularity, and then answer questions on Hankel operators with matrix-valued bounded type symbols. They also examine an interpolation problem related to a certain functional equation on matrix functions of bounded type; this can be seen as an extension of the classical Hermite-Fejer Interpolation Problem for matrix rational functions. The authors then extend the $H^\infty$-functional calculus to an $\overline{H^\infty}+H^\infty$-functional calculus for the compressions of the shift. Next, the authors consider the subnormality of Toeplitz operators with matrix-valued bounded type symbols and, in particular, the matrix-valued version of Halmos's Problem 5 and then establish a matrix-valued version of Abrahamse's Theorem. They also solve a subnormal Toeplitz completion problem of $2\times 2$ partial block Toeplitz matrices. Further, they establish a characterization of hyponormal Toeplitz pairs with matrix-valued bounded type symbols and then derive rank formulae for the self-commutators of hyponormal Toeplitz pairs.
  • Författare: Raul E Curto, In Sung Hwang, Woo Young Lee
  • Format: Pocket/Paperback
  • ISBN: 9781470436247
  • Språk: Engelska
  • Antal sidor: 100
  • Utgivningsdatum: 2019-10-30
  • Förlag: American Mathematical Society