bokomslag Medium-Range Order in Amorphous Silicon Measured by Fluctuation Electron Microscopy
Samhälle & debatt

Medium-Range Order in Amorphous Silicon Measured by Fluctuation Electron Microscopy

National Renewable Energy Laboratory

Pocket

369:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 5-10 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 40 sidor
  • 2012
Despite occasional experimental hints, medium-range structural order in covalently bonded amorphous semiconductors had largely escaped detection until the advent of fluctuation electron microscopy (FEM) in 1996. Using FEM, we find that every sample of amorphous silicon and germanium we have investigated, regardless of deposition method or hydrogen content, is rich in medium-range order. The paracrystalline structural model, which consists of small, topologically ordered grains in an amorphous matrix, is consistent with the FEM data; but due to strain effects, materials with a paracrystalline structure appear to be amorphous in diffraction measurements. We present measurements on hydrogenated amorphous silicon deposited by different methods, some of which are reported to have greater stability against the Staebler-Wronski effect. FEM reveals that the matrix material of these samples is relatively similar, but the order changes in different ways upon both light soaking and thermal annealing. Some materials are inhomogeneous, with either nanocrystalline inclusions or large area-to-area variation in the medium-range order. We cite recent calculations that electronic states in the conduction band tail are preferentially located around the boundaries of the nm-scale paracrystalline regions that we have identified. This is new evidence in support of spatially inhomogeneous conduction mechanisms in a-Si. The key discovery in our work is that all samples of amorphous silicon must be described as having nm-scale topological crystalline order. This strongly modifies the long-standing model of a covalent random network. Our new understanding of medium-range order must be considered in all future models of electronic properties and the Staebler-Wronski effect.

  • Författare: National Renewable Energy Laboratory
  • Format: Pocket/Paperback
  • ISBN: 9781249134268
  • Språk: Engelska
  • Antal sidor: 40
  • Utgivningsdatum: 2012-07-20
  • Förlag: Bibliogov