Data & IT
Minimum Error Entropy Classification
Joaquim P Marques De S • Lus M A Silva • Jorge M F Santos • Lus A Alexandre
Inbunden
1499:-
Uppskattad leveranstid 7-12 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
Andra format:
- Pocket/Paperback 1499:-
This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals. Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multilayer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEElike concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions.
- Format: Inbunden
- ISBN: 9783642290282
- Språk: Engelska
- Antal sidor: 262
- Utgivningsdatum: 2012-07-25
- Förlag: Springer-Verlag Berlin and Heidelberg GmbH & Co. K