bokomslag Mining Structures of Factual Knowledge from Text
Data & IT

Mining Structures of Factual Knowledge from Text

Xiang Ren Jiawei Han

Pocket

909:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 183 sidor
  • 2018
The real-world data, though massive, is largely unstructured, in the form of natural-language text. It is challenging but highly desirable to mine structures from massive text data, without extensive human annotation and labeling. In this book, we investigate the principles and methodologies of mining structures of factual knowledge (e.g., entities and their relationships) from massive, unstructured text corpora. Departing from many existing structure extraction methods that have heavy reliance on human annotated data for model training, our effort-light approach leverages human-curated facts stored in external knowledge bases as distant supervision and exploits rich data redundancy in large text corpora for context understanding. This effort-light mining approach leads to a series of new principles and powerful methodologies for structuring text corpora, including (1) entity recognition, typing and synonym discovery, (2) entity relation extraction, and (3) open-domain attribute-valuemining and information extraction. This book introduces this new research frontier and points out some promising research directions.
  • Författare: Xiang Ren, Jiawei Han
  • Format: Pocket/Paperback
  • ISBN: 9783031007842
  • Språk: Engelska
  • Antal sidor: 183
  • Utgivningsdatum: 2018-06-26
  • Förlag: Springer International Publishing AG