bokomslag Modeling Adaptive Middleware and Its Applications to Military Tactical Datalinks
Psykologi & pedagogik

Modeling Adaptive Middleware and Its Applications to Military Tactical Datalinks

Jason T Lawson

Pocket

859:-

Funktionen begränsas av dina webbläsarinställningar (t.ex. privat läge).

Uppskattad leveranstid 7-12 arbetsdagar

Fri frakt för medlemmar vid köp för minst 249:-

  • 88 sidor
  • 2012
Open systems solutions and techniques have become the de facto standard for achieving interoperability between disparate, large-scale, legacy software systems. A key technology among open systems solutions and techniques is middleware. Middleware, in general, is used to isolate applications from dependencies introduced by hardware, operating systems, and other low-level aspects of system architectures. While middleware approaches are or will be integrated into operational military systems, many open questions exist about the appropriate areas to applying middleware. Adaptive middleware is middleware that provides an application with a run-time adaptation strategy, based upon system-level interfaces and properties. Adaptive middleware is an example of an active applied research area. Adaptive middleware is being developed and applied to meet the ever-increasing challenges set forth by the next generation of mission-critical distributed real-time and embedded (DRE) systems. The driving force behind many next-generation DRE systems is the establishment of QoS requirements typically associated with workloads that vary dynamically. The Weapon System Open Architecture (WSOA), an adaptive middleware platform developed by Boeing, is modeled as a part of this research to determine the scalability of the architecture. The WSOA adaptive middleware was previously flight-tested with one tactical node, and the test results represent the performance baseline the architecture. The WSOA adaptive middleware is modeled with 1, 2, 4, 8 and 16 tactical nodes. The results of the modeling and simulation is that the WSOA adaptive middleware can achieve the performance baseline achieved during the original flight-test, in the cases of 1, 2, and 4 tactical nodes. In addition, the results of the modeling and simulation also demonstrate that the WSOA adaptive middleware cannot achieve the original performance baseline, in the cases of 8 and 16 tactical nodes.
  • Författare: Jason T Lawson
  • Format: Pocket/Paperback
  • ISBN: 9781288280629
  • Språk: Engelska
  • Antal sidor: 88
  • Utgivningsdatum: 2012-11-12
  • Förlag: Biblioscholar