Uppskattad leveranstid 10-16 arbetsdagar
Fri frakt för medlemmar vid köp för minst 249:-
Modeling of Post-Myocardial Infarction: ODE/PDE Analysis with R presents mathematical models for the dynamics of a post-myocardial (post-MI), aka, a heart attack. The mathematical models discussed consist of six ordinary differential equations (ODEs) with dependent variables Mun; M1; M2; IL10; T?; IL1. The system variables are explained as follows: dependent variable Mun = cell density of unactivated macrophage; dependent variable M1 = cell density of M1 macrophage; dependent variable M2 = cell density of M2 macrophage; dependent variable IL10 = concentration of IL10, (interleuken-10); dependent variable T? = concentration of TNF-? (tumor necrosis factor-?); dependent variable IL1 = concentration of IL1 (interleuken-1).
The system of six ODEs does not include a spatial aspect of an MI in the cardiac tissue. Therefore, the ODE model is extended to include a spatial effect by the addition of diffusion terms. The resulting system of six diffusion PDEs, with x (space) and t (time) as independent variables, is integrated (solved) by the numerical method of lines (MOL), a general numerical algorithm for PDEs.
- Includes PDE routines based on the method of lines (MOL) for computer-based implementation of PDE models
- Offers transportable computer source codes for readers in R, with line-by-line code descriptions as it relates to the mathematical model and algorithms
- Authored by a leading researcher and educator in PDE models
- Format: Pocket/Paperback
- ISBN: 9780443136115
- Språk: Engelska
- Antal sidor: 144
- Utgivningsdatum: 2023-08-25
- Förlag: Academic Press